DOCUMENTING SPECIAL SYSTEMS USING **SMARTPLANT INSTRUMENTATION**

John Dressel, FLUOR Applications Specialist

Special Control and Wiring Systems

- Special Systems Require Special treatment of Index, Specs and Wiring
- Special Control Systems beyond Basic Process Control Systems (BPCS)
 - Safety Instrumented Systems (SIS) in SmartPlant Instrumentation
 - Emergency Shutdown Systems (ESD) in SmartPlant Instrumentation
 - Burner Management Systems (BMS) in SmartPlant Instrumentation
 - Asset management systems (AMS) in SmartPlant Instrumentation
 - Fire and Gas Systems (F&G) in SmartPlant Instrumentation
- Special Wiring Systems beyond Conventional 4-20 ma Instruments
 - Smart HART and other Digital wiring systems
 - Communications Wiring Systems
 - Foundation Fieldbus and other Bus wiring systems
 - Wireless Instrument Systems
- Other Special Systems documented in SmartPlant Instrumentation

Tag Number	IO SYSTEM	MAINT CYCLE	INTERLOCK
101-FT -2211	DCS		
101-FV -2211	DCS		
101-FT -2212	DCS		
101-FV -2212	DCS		
101-FT -2213	SIS	1 Year	1-23
101-FV -2213	SIS	6 Months	1-23
101-FT -2214	SIS	1 Year	1-23
101-FV -2214	SIS	6 Months	1-23
101-FT -2215	SIS	1 Year	1-23
101-FV -2215	SIS	6 Months	1-23

- Additional Index User Defined Fields and Tables for Safety Data
 - SIL Ratings
 - Interlock Numbers
 - Maintenance Cycles
 - Instrument System Identifiers
 - Special Notes for Design Engineering

1	Tag Number		SEE LIST	
2	Fire Protection Plan DVVG No.			
3	Service	Area Name	SEE LIST	SEE LIST
4	Detector Type	EMI Shielding Hz	Infrared Point HC Gas Detector	Yes
5	Safety Integrity Level	Approvals	IEC 61508 (SIL Level 2)	ATEX
6	Area Classification		Zone 2 CENELEC	
7	Output	Range	4-20 mA	0 - 100% LEL
8	Gas to be Detected - LPG		BUTANE/PROPANE	
9				
10				

- Additional Spec Sheet Data for Safety Instrumented Systems:
 - Safety Integrity Level Ratings
 - Approvals and Testing Requirements
 - Certifications and Approvals
 - Redundancy or Conditioning Requirements
 - Special Notes for Design Engineering
 - Partial Stroke Testing Requirements (for Valves)
- New Spec Sheets May Need to be Added for Safety Devices

- Issues When Wiring Safety Instrumented Systems:
 - PLC I/O Redundant Power Distribution uses common bus
 - Maintain Physical Separation between SIS and BPCS wiring
 - Minimize terminals and connections as points of failure
 - Special Colors, Markings and Labels for Safety Systems
- May Need to Create Ladder Wiring instead of Loop Diagrams

- Value added to SIS by documenting with SPI
 - Integrity of a Data Centric Environment for SIS Information
 - Management of Change meets Regulatory Requirements
 - Controlled Access and Records Keeping Needed for SIS
 - Real Time Access to Data for Quick Disaster Response
 - SPI System remains in place for the lifecycle of the plant

Emergency Shutdown Systems in SPI

- Additional Index Data for Emergency Shutdown Systems:
 - Interlock Numbers
 - Instrument System Identifiers
- Issues When Wiring Emergency Shutdown Systems:
 - Triple Redundant Control Logic and I/O
 - Special Colors, Markings and Labels for Safety Systems

Burner Management Systems in SPI

- Additional Index Data for Burner Management Systems:
 - Interlock Numbers
 - Instrument System Identifiers
- Additional Spec Sheets for Burner Management Instruments
- Issues When Wiring Burner Management Instruments:
 - Furnished controllers and instruments with isolated system
 - Special Colors, Markings and Labels for Burner Management System

Asset Management Systems in SPI

- Additional Index Data for Asset Management Systems:
 - Functional Location for SAP Unique Identifier
 - Asset Management System Identifiers
- May use the SmartPlant Instrumentation SAP Interface for Data Transfer
- Asset Management Instruments Data requirements:
 - Interface with HART Data, DCS Configuration and Field Calibration Databases
 - Generally defined by Owner Operator requirements

Fire and Gas Systems in SPI

- Additional Index Data for Fire & Gas Systems:
 - Additional Instrument Types for Fire and Gas Instruments
 - Instrument System Identifiers
 - Instrument Location drawing or zone definitions
 - Additional Spec Sheets for Fire and Gas Instruments
- Issues When Wiring Fire and Gas Instruments :
 - Different and Mixed wiring topographies generally prohibit using SPI for wiring

Smart HART Digital wiring systems

- Additional Index Data for HART Digital wiring systems:
 - It is not just 4-20 mA anymore
 - Process, Alarm and Trip data now reside in the Off Line Instruments
- May require HART Enabled I/O, Multiplexer and Interface devices
- Wiring HART Digital wiring systems:
 - Wires much like conventional 4-20 mA instrument systems

Communications Wiring Systems in SPI

- SmartPlant Instrumentation Telecom Module:
 - Build and Index all Communication Devices
 - Fiber Optic and Network wiring definitions
- Need Specification Library for Communication Devices
- Communications Wiring Systems:
 - Uses Block Diagrams or Point to Point Diagrams
 - SmartPlant Instrumentations Cable Block Diagram needs enhancement

Telecommunications Systems SPI Data

- Index Data for Telecom Devices:
 - Telecom Tag Class is Required
 - Show up in standard Index to be Filtered
 - No P&ID, Line or Equipment Data
 - Special Telecom Supporting Tables
 - Telecom Device Types
 - Telecom Line Numbers (Not Pipe)
 - Telecom Field Equipment
 - Telecom Signal Levels
 - Etc...
- Telecom Device Type Profile allows Spec Sheets
- Telecom Panels, Cabinets and Equipment are created in the Reference Explorer
- Telecom Reports
 - Load Lists
 - Device and Field Equipment Reports
 - Signal Level and Wiring Block Diagrams

Foundation and other Fieldbus wiring systems

- Some Issues with Bus systems in SPI
 - Virtual Field Devices (Function Blocks) add records to the Index
 - Fieldbus Page for Spec Forms is not cost effective
 - Left and right wiring on bricks makes segment diagrams awkward
 - Conservative Global Parameters are more effective than Validation reports
 - No AutoCAD or Microstation Segment Diagrams available in SPI

Foundation and other Fieldbus wiring systems

- Steps when developing a Fieldbus System in SmartPlant Instrumentation
 - 1. Define the Segment-Wide Parameters for the project
 - 2. Define Foundation Fieldbus instrument type profiles
 - 3. Add a new browser view for Fieldbus Manager
 - 4. Create user-defined function blocks (if required)
 - 5. Associate function blocks with instrument types
 - 6. Create Foundation Fieldbus instruments in Index
 - 7. Generate Fieldbus Device Specifications
 - 8. Associate unique Function Blocks with Fieldbus Tags
 - 9. Create Fieldbus Segments in the Fieldbus Manager
 - 10. Associate Fieldbus Instruments with Segments
 - 11. Design your wiring and termination equipment
 - 12. Add your Fieldbus home-run cables and spurs
 - 13. Make required cable connections and associations
 - 14. Connect the Fieldbus I/O H1 assignments
 - 15. Generate Fieldbus validation reports (if required)
 - 16. Generate segment diagrams and wiring reports

Wireless Instrument Systems in SPI

- Steps when developing a Wireless System in SmartPlant Instrumentation
 - 1. Create User Defined Fields in The Index
 - Scan rate
 - Gateway
 - Wireless adapter
 - Plan Drawing
 - 2. Define Wireless Device instrument type profiles
 - 3. Add a browser view for Wireless devices
 - 4. Develop Spec Sheets for Wireless Transmitters
 - 5. Create custom symbols for Wireless Transmitters
 - 6. Develop Spec Sheets for Wireless Gateways
 - 7. Create custom symbols for Wireless Gateways
 - 8. Create Wireless Gateway Diagrams
 - May be Block Diagrams or
 - Gateway Loop Diagrams

Other Special Systems Documented in SPI

- Emerging Technology
 - CHARMS and Electronic Marshaling with remote I/O are becoming more popular
- Ethernet and other Networks
 - Many Instruments have Ethernet connectors and will configure as Plug and Play
- Motor Control and Smart Electrical Switchgear
 - Electrical Motor Control Centers and Switchgear are getting more programmable and compatible with Instrument Control Systems

QUESTIONS

